Abstract
Sulfate transport by tobacco (Nicotiana tabacum L. var. Xanthi) cells cultured on either l-cysteine or sulfate as a sole sulfur source was measured. The transport rate on either sulfur source was low during pre-exponential growth, increased during exponential growth, and was maximal in late exponential cells. The initial increase in transport rate was correlated with a decline in the intracellular sulfate, but was not correlated with the amino acid content of the cells which remained relatively constant before the depletion of the endogenous sulfate pool. The previously reported inhibition of sulfate transport by l-cysteine was shown to be caused by an elevation in intracellular sulfate resulting from the degradation of cysteine to sulfate. It is proposed that the intracellular sulfate pool is the major factor regulating the entry of sulfate into tobacco cells.