Simulation Techniques in Electromyography

Abstract
A motor unit action potential (MUAP) recorded in clinical electromyography (EMG) is the spatial and temporal summation of the action potentials (AP's) from all muscle fibers in a motor unit (MU). An important determinant of MUAP waveform characteristics is the size of the recording electrode. In this paper, we have described the use of a modified line source model of single muscle fiber action potentials to simulate MUAP's as recorded by single fiber (SF) EMG, concentric needle (CN) EMG, and macro-EMG electrodes. Results indicate that SFEMG recordings from a normal MU contain mainly the AP's of the closest one to three muscle fibers of the MU. The amplitude, area, and duration of the simulated CNEMG MUAP's are determined mainly by the number and size of muscle fibers within a semicircular territory of 0.5, 1.5, and 2.5 mm, respectively, around the tip of the electrode. The amplitude and area of simulated macro-EMG MUAP's increase with the number of muscle fibers in the MU.

This publication has 23 references indexed in Scilit: