Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery
- 22 August 1999
- journal article
- research article
- Published by ASME International in Journal of Biomechanical Engineering
- Vol. 122 (1), 77-85
- https://doi.org/10.1115/1.429629
Abstract
The endothelial cells (ECs) lining a blood vessel wall are exposed to both the wall shear stress (WSS) of blood flow and the circumferential strain (CS) of pulsing artery wall motion. These two forces and their interaction are believed to play a role in determining remodeling of the vessel wall and development of arterial disease (atherosclerosis). This study focused on the WSS and CS dynamic behavior in a compliant model of a coronary artery taking into account the curvature of the bending artery and physiological radial wall motion. A three-dimensional finite element model with transient flow and moving boundaries was set up to simulate pulsatile flow with physiological pressure and flow wave forms characteristic of the coronary arteries. The characteristic coronary artery curvature and flow conditions applied to the simulation were: aspect ratio (λ)=10, diameter variation (DV)=6 percent, mean Reynolds number (Re)=150, and unsteadiness parameter (α)=3. The results show that mean WSS is about 50 percent lower on the inside wall than the outside wall while WSS oscillation is stronger on the inside wall. The stress phase angle (SPA) between CS and WSS, which characterizes the dynamics of the mechanical force pattern applied to the endothelial cell layer, shows that CS and WSS are more out of phase in the coronaries than in any other region of the circulation (−220 deg on the outside wall, −250 deg on the inside wall). This suggests that in addition to WSS, SPA may play a role in localization of coronary atherosclerosis. [S0148-0731(00)01201-2]Keywords
This publication has 48 references indexed in Scilit:
- Wall shear rate measurements in an elastic curved artery modelBiorheology, 1997
- Cyclic Strain Enhances Adhesion of Monocytes to Endothelial Cells by Increasing Intercellular Adhesion Molecule-1 ExpressionHypertension, 1996
- Computational Simulation of Flow in the End-to-End Anastomosis of a Rigid Graft and a Compliant ArteryPublished by Wolters Kluwer Health ,1996
- Cyclic Strain-Induced Plasminogen Activator Inhibitor-1 (PAI-1) Release from Endothelial Cells Involves Reactive Oxygen SpeciesBiochemical and Biophysical Research Communications, 1996
- Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average ConditionsJournal of Biomechanical Engineering, 1996
- Nonlinear analysis of flow in an elastic tube (artery): steady streaming effectsJournal of Fluid Mechanics, 1992
- An Experimental Study of Coronary Artery Fluid MechanicsJournal of Biomechanical Engineering, 1985
- Location of Early Atheroma in the Human Coronary ArteriesJournal of Biomechanical Engineering, 1981
- Analysis of Fully Developed Unsteady Viscous Flow in a Curved Elastic Tube Model to Provide Fluid Mechanical Data for Some Circulatory Path-Physiological Situations and Assist DevicesJournal of Biomechanical Engineering, 1979
- Blood Velocity Patterns in Coronary ArteriesJournal of Biomechanical Engineering, 1977