Myeloproliferative Neoplasms: Molecular Pathophysiology, Essential Clinical Understanding, and Treatment Strategies

Abstract
To update oncologists on pathogenesis, contemporary diagnosis, risk stratification, and treatment strategies in BCR-ABL1–negative myeloproliferative neoplasms, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Recent literature was reviewed and interpreted in the context of the authors' own experience and expertise. Pathogenetic mechanisms in PV, ET, and PMF include stem cell–derived clonal myeloproliferation and secondary stromal changes in the bone marrow and spleen. Most patients carry an activating JAK2 or MPL mutation and a smaller subset also harbors LNK, CBL, TET2, ASXL1, IDH, IKZF1, or EZH2 mutations; the precise pathogenetic contribution of these mutations is under investigation. JAK2 mutation analysis is now a formal component of diagnostic criteria for PV, ET, and PMF, but its prognostic utility is limited. Life expectancy in the majority of patients with PV or ET is near-normal and disease complications are effectively (and safely) managed by treatment with low-dose aspirin, phlebotomy, or hydroxyurea. In PMF, survival and quality of life are significantly worse and current therapy is inadequate. In ET and PV, controlled studies are needed to show added value and justify the risk of unknown long-term health effects associated with nonconventional therapeutic approaches (eg, interferon-alfa). The unmet need for treatment in PMF dictates a different approach for assessing the therapeutic value of new drugs (eg, JAK inhibitors, pomalidomide) or allogeneic stem-cell transplantation.