Effects of eccentric and concentric resistance training on skeletal muscle substrates, enzyme activities and capillary supply

Abstract
This study compared the skeletal muscle metabolic adaptations in response to combined eccentric and concentric or concentric resistance training regimens. Twenty-six physically active males were assigned to either the combined eccentric and concentric group (n = 10), the concentric group (n = 10) or the control group (n = 6). The combined eccentric and concentric and the concentric groups performed four to five sets of maximal, voluntary bilateral quadriceps muscle actions at 1.05 rad s-1 using a speed-controlled dynamometer three times per week for 12 weeks. The concentric group performed 12 concentric actions per set, whereas the combined eccentric and concentric group performed six coupled eccentric and concentric actions per set. Bilateral percutaneous muscle biopsies were obtained from m. vastus lateralis at rest pre- and post-training. Tissue samples were analysed for contents of adenosine triphosphate, creatine phosphate and creatine and for enzyme activities of citrate synthase, lactate dehydrogenase, myokinase, phosphofructokinase, hexokinase and Mg2+-ATPase using fluorometric techniques. Histochemical staining procedures were employed to determine capillary supply. The overall increase (P < 0.05) in muscle strength was greater (P < 0.05) for the combined eccentric and concentric group than for the concentric group. Enzyme or substrate contents and capillary supply were unaltered after either type of training. It is suggested that substantial increases in muscle strength may occur in response to resistance training without enhancing or compromising metabolic function of skeletal muscle.