Inhibition of Histone Deacetylation Induces Constitutive Derepression of the Beta Interferon Promoter and Confers Antiviral Activity

Abstract
The induction of alpha/beta interferon (IFN-α/β) genes constitutes one of the first responses of the cell to virus infection. The IFN-β gene is constitutively repressed in uninfected cells and is transiently activated after virus infection. In this work we demonstrate that histone deacetylation regulates the silent state of the murine IFN-β gene. Using chromatin immunoprecipitation (ChIP) assays, we show a direct in vivo correlation between the transcriptionally silent state and a state of hypoacetylation of histone H4 on the IFN-β promoter region. Trichostatin A (TSA), a specific inhibitor of histone deacetylases, induced strong, constitutive derepression of the murine IFN-β promoter stably integrated into a chromatin context, as well as the hyperacetylation of histone H4, without requiring de novo protein synthesis. We also show in this work that TSA treatment strongly enhances the endogenous IFN level and confers an antiviral state to murine fibroblastic L929 cells. Inhibition of histone deacetylation with TSA protected the cells against the lost of viability induced by vesicular stomatitis virus (VSV) and inhibited VSV multiplication. Using antibodies neutralizing IFN-α/β, we show that the antiviral state induced by TSA is due to TSA-induced IFN production. The demonstration of the predominant role of histone deacetylation during the regulation of the constitutive repressed state of the IFN-β promoter constitutes an interesting advance on the understanding of the negative regulation of this gene and opens up the possibility of new therapeutic perspectives.