Identification and Characterization of Phage Variants of a Strain of Epidemic Methicillin-Resistant Staphylococcus aureus (EMRSA-15)

Abstract
EMRSA-15 is one of the most important strains of epidemic methicillin-resistant Staphylococcus aureus (EMRSA) found in the United Kingdom. It was originally characterized by weak lysis with phage 75 and production of enterotoxin C but not urease. Two variant strains of EMRSA-15 which show a broader phage pattern than the progenitor strain have emerged. A total of 153 recent clinical isolates representing classical EMRSA-15 (55 isolates) or these phage variants (98 isolates) were compared by SmaI macrorestriction profiles in pulsed-field gel electrophoresis (PFGE) as well as by urease and enterotoxin C production. Eight of the 98 isolates were shown to be other unrelated strains by both PFGE and their production of urease, a misidentification rate of 8% by phage typing. Seventy-one EMRSA-15 isolates were enterotoxin C negative, and the majority of these were sensitive to phage 81. Examination of PFGE profiles and Southern blotting studies suggest that the enterotoxin C gene locus is encoded on a potentially mobile DNA segment of ca. 15 kb. After elimination of the eight non-EMRSA-15 isolates, the remaining 145 were characterized by PFGE, yielding 22 profiles. All profiles were within five band differences of at least one other profile. Classical EMRSA-15 isolates showed nine PFGE profiles, with the majority of isolates (68%) in profile B1. Six of these nine PFGE profiles were unique to the classical EMRSA-15 isolates. Among the phage variants of EMRSA-15, 16 profiles were seen, but the majority of isolates (83%) fell into 1 of 4 profiles (B2, B3, B4, and B7) which correlated well with phage patterns. The most divergent PFGE profiles among the EMRSA-15 isolates had as many as 12 band differences from one another, suggesting that in examining isolates belonging to such a temporally and geographically disseminated epidemic strain, the range of PFGE profiles must be regarded as a continuum and analyzed by relating the profiles back to the most common or progenitor profile.