Hyperresponsiveness of vitamin D receptor gene expression to 1,25-dihydroxyvitamin D3. A new characteristic of genetic hypercalciuric stone-forming rats.
Open Access
- 15 May 1998
- journal article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 101 (10), 2223-2232
- https://doi.org/10.1172/jci1164
Abstract
Hypercalciuria in genetic hypercalciuric stone-forming (GHS) rats is accompanied by intestinal Ca hyperabsorption with normal serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] levels, elevation of intestinal, kidney, and bone vitamin D receptor (VDR) content, and greater 1,25(OH)2D3-induced bone resorption in vitro. To test the hypothesis that hyperresponsiveness of VDR gene expression to 1,25(OH)2D3 may mediate these observations, male GHS and wild-type Sprague- Dawley normocalciuric control rats were fed a normal Ca diet (0.6% Ca) and received a single intraperitoneal injection of either 1,25(OH)2D3 (10-200 ng/100 g body wt) or vehicle. Total RNAs were isolated from both duodenum and kidney cortex, and the VDR and calbindin mRNA levels were determined by Northern blot hybridization using specific cDNA probes. Under basal conditions, VDR mRNA levels in GHS rats were lower in duodenum and higher in kidney compared with wild-type controls. Administration of 1,25(OH)2D3 increased VDR gene expression significantly in GHS but not normocalciuric animals, in a time- and dose-dependent manner. In vivo half-life of VDR mRNA was similar in GHS and control rats in both duodenum and kidney, and was prolonged significantly (from 4-5 to > 8 h) by 1,25(OH)2D3 administration. Neither inhibition of gene transcription by actinomycin D nor inhibition of de novo protein synthesis with cycloheximide blocked the upregulation of VDR gene expression stimulated by 1,25(OH)2D3 administration. No alteration or mutation was detected in the sequence of duodenal VDR mRNA from GHS rats compared with wild-type animals. Furthermore, 1,25(OH)2D3 administration also led to an increase in duodenal and renal calbindin mRNA levels in GHS rats, whereas they were either suppressed or unchanged in wild-type animals. The results suggest that GHS rats hyperrespond to minimal doses of 1,25(OH)2D3 by an upregulation of VDR gene expression. This hyperresponsiveness of GHS rats to 1,25(OH)2D3 (a) occurs through an increase in VDR mRNA stability without involving alteration in gene transcription, de novo protein synthesis, or mRNA sequence; and (b) is likely of functional significance, and affects VDR-responsive genes in 1, 25(OH)2D3 target tissues. This unique characteristic suggests that GHS rats may be susceptible to minimal fluctuations in serum 1, 25(OH)2D3, resulting in increased VDR and VDR-responsive events, which in turn may pathologically amplify the actions of 1,25(OH)2D3 on Ca metabolism that thus contribute to the hypercalciuria and stone formation.This publication has 39 references indexed in Scilit:
- Increased sensitivity to 1,25(OH)2D3 in bone from genetic hypercalciuric ratsAmerican Journal of Physiology-Cell Physiology, 1996
- Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo.Journal of Clinical Investigation, 1990
- Analysis of rat vitamin D-dependent calbindin-D28k gene expression.Journal of Biological Chemistry, 1988
- The Effects of 1,25-Dihydroxyvitamin D3and Dexamethasone on Rat Osteoblast-Like Primary Cell Cultures: Receptor Occupancy and Functional Expression Patterns for Three Different Bioresponses*Endocrinology, 1986
- Evidence for Disordered Control of 1,25-Dihydroxyvitamin D Production in Absorptive HypercalciuriaNew England Journal of Medicine, 1984
- INFLUENCE OF 1,25-DIHYDROXYVITAMIN-D3 ON CULTURED OSTEOGENIC-SARCOMA CELLS - CORRELATION WITH THE 1,25-DIHYDROXYVITAMIN-D3 RECEPTOR1984
- Effects of low-calcium diet on urine calcium excretion, parathyroid function and serum 1,25(OH)2D3 levels in patients with idiopathic hypercalciuria and in normal subjectsThe American Journal of Medicine, 1982
- Orthophosphate Therapy Decreases Urinary Calcium Excretion and Serum 1,25-Dihydroxyvitamin D Concentrations in Idiopathic Hypercalciuria*Journal of Clinical Endocrinology & Metabolism, 1980
- The role of 1 alpha, 25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria.Journal of Clinical Investigation, 1977
- The urinary excretion of calcium and inorganic phosphate in 344 patients with calcium stone of renal originBritish Journal of Surgery, 1958