Discrete Structural Optimization

Abstract
A new method for solving discrete structural optimization problems is presented. An interior penalty function is used to convert the original constrained problem into an unconstrained parametric problem. Then the search for the optimal solution to the parametric problem is based on a discrete direction gradient. Solving an appropriate sequence of these unconstrained parametric problems is equivalent to solving the original constrained optimization problem. This method is illustrated first on a small reinforced concrete problem, and then to the design of steel building frames which are made up of standard sections. Results for a one-story four-bay unsymmetrical frame and an eight-story three-bay symmetrical frame are described.