Abstract
A one-dimensional arbitrary system with quantum Hamiltonian H(q, p) is shown to acquire the 'geometric' phase gamma (C)=(1/2) contour integral c(Podqo-qodpo) under adiabatic transport q to q+q+qo(t) and p to p+po(t) along a closed circuit C in the parameter space (qo(t), po(t)). The non-vanishing nature of this phase, despite only one degree of freedom (q), is due ultimately to the underlying non-Abelian Weyl group. A physical realisation in which this Berry phase results in a line spread is briefly discussed.

This publication has 11 references indexed in Scilit: