Hydroperoxoferric heme intermediate as a second electrophilic oxidant in cytochrome P450-catalyzed reactions

Abstract
Experimental evidence supporting the catalytic activity of the peroxoferric and hydroperoxoferric cytochrome P450 intermediates as alternative oxidants to the compound I (ferryl) state in the oxygenation of organic substrates is reviewed. The peroxoferric P450 state is proposed to function as a nucleophile in the lyase step of the P450-aromatase reaction. Several systems are reviewed in which the hydroperoxoferric P450 intermediate likely functions as a second electrophilic oxidant, the “two-oxidants” model. These include alkene epoxidation, sulfoxidation, and hydroxylation of methyl groups on cyclopropane rings. The key use of the P450 mutants from different sources in which the conserved threonine in the distal substrate binding pocket is replaced with alanine, in order to minimize the formation of the compound I intermediate and unmask the reactivity of the hydroperoxoferric state, is emphasized. These data are discussed in the context of the “two-states” model, which proposes that the compound I P450 intermediate has both high- and low-spin states with different reactivities. A complicated reaction profile emerges for the wide range of P450 reactions involving up to three reactive intermediates, of which the most reactive, the compound I P450 state, has two spin states with different reactivities.