Analysis In Vitro of Capacity of Fetal Fat Pad to Support Mammary Gland Embryogenesis. (fetus/mouse mammary gland/tissue culture/in vitro morphogenesis/biomatrix)

Abstract
Fourteen-day fetal mammary fat pad precursor tissue (FP) has the capacity to support various fetal epithelia allowing them to accomplish their characteristic development in vivo, without their own mesenchyme (1). This capacity decreases with age of fetal fat pad and is lost postnatally. To analyse the molecular mechanism of such interaction, a method for in vitro duplication of organogenesis is necessary. In the present paper, a co-culture system of fetal epithelium with prospective mammary fat pad is described. The explanted mammary epithelium started budding, then grew out forming branched mammary ducts with end buds. Ultrastructurally, the developing ductal structures exhibited the typical mammary gland morphogenesis. 3 H-Thymidine incorportion assessed by autoradiography showed that the mammary gland morphogenesis in vitro was due to the proliferation of epithelial cells, not merely to a change of the shape of the epithelium. This supportive capacity of 14-day FP also decreased with aging; explanted mammary epithelium did not grow into 17-day FP. When insoluble, non-living biomatrix was used in place of living FP the epithelium grew into the matrix but the resulting structures lacked characteristic morphology of epithelium on living fetal FP. The difference of capacity between 14-day and 17-day tissues was also lost.