CLONAL ORIGIN OF HUMAN ERYTHRO EOSINOPHILIC COLONIES IN CULTURE

  • 1 January 1982
    • journal article
    • research article
    • Vol. 59 (4), 857-864
Abstract
The presence of erythropoietic bursts containing eosinophils and their precursors in methylcellulose culture of human peripheral blood and marrow nucleated cells in the presence of erythropoietin and medium conditioned by phytohemagglutinin-stimulated leukocytes (PHA-LCM) were observed. It was possible to identify these bursts (colonies) in situ in methylcellulose culture on the basis of their unique red and black colors. Transmission electron microscopy revealed that the constituent erythroid and eosinophilic cells lay intermixed with each other, and through close intercellular connections formed compact colonies and bursts consisting of several subcolonies. Differential counts to individual erythro-eosinophil colonies (EEo colonies) revealed only a small percentage of blast cells in most of the colonies. Replating experiments of single EEo colonies yielded only eosinophilic colonies and clusters and erythroid colonies. The clonal nature of the EEo colonies was documented by analysis of Y-chromatin-positive cells in individual EEo colonies derived from cocultures of male and female peripheral blood mononuclear cells. Comparison of conditioned media indicated that PHA-LCM is the best stimulator for EEo colonies. The differentiation capabilities of the progenitors for EEo colonies may be restricted to erythroid and eosinophilic differentiation.