Abstract
Interferometric data were obtained in the UTIAS 10 × 18 cm hypervelocity shock tube of oblique shock-wave reflexions in nitrogen at initial temperatures and pressures of about 300 K and 15 torr. The shock-Mach-number range covered was 2 ≤Ms≤ 8 over a series of wedge angles 2° ≤ θw≤ 60°. Dual-wavelength laser interferograms were obtained by using a 23 cm diameter field of view Mach-Zehnder interferometer. In addition to our numerous results the available data for nitrogen, air and oxygen obtained over the last three decades were also utilized. It is shown analytically and experimentally that in non-stationary flows seven domains exist in the (Ms, θw) plane where regular reflexion (RR), single-Mach reflexion (SMR), complex-Mach reflexion (CMR) and double-Mach reflexion (DMR) can occur. In addition, the transition boundaries between these regions were established. The experimental results from many sources substantiate the present analysis, and areas of disagreement which existed in the literature are now clarified and resolved. It is shown that real-gas effects have a significant influence on the size of the regions and their boundaries. The comprehensive, accurate and sensitive isopycnic data will form a base for comparing existing and future numerical analyses of such complex flows.

This publication has 2 references indexed in Scilit: