Effects of off-state alignment in polymer dispersed liquid crystals
- 1 January 1989
- journal article
- applications
- Published by Taylor & Francis in Liquid Crystals
- Vol. 5 (5), 1477-1487
- https://doi.org/10.1080/02678298908027785
Abstract
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.Keywords
This publication has 7 references indexed in Scilit:
- A Light Control Film Composed of Liquid Crystal Droplets Dispersed in an Epoxy MatrixMolecular Crystals and Liquid Crystals, 1987
- A Light Control Film Composed of Liquid Crystal Droplets Dispersed in a UV-Curable PolymerMolecular Crystals and Liquid Crystals, 1987
- Contrast ratios of polymer-dispersed liquid crystal filmsApplied Optics, 1987
- Light scattering from a small nematic dropletPhysical Review A, 1986
- Polymer dispersed nematic liquid crystal for large area displays and light valvesJournal of Applied Physics, 1986
- Field controlled light scattering from nematic microdropletsApplied Physics Letters, 1986
- Photographic Light Scattering by Polyethylene FilmsJournal of Applied Physics, 1960