Methionine derivatives diminish sulphide damage to colonocytes--implications for ulcerative colitis.

Abstract
Bacterial production of anionic sulphide is increased in the colon of ulcerative colitis and sulphides can cause metabolic damage to colonocytes. To assess the reversal of the damaging effect of sulphide to isolated colonocytes by methionine and methionine derivatives. Isolated colonocytes were prepared from rat colons and 12 human colectomy specimens. In cell suspensions 14CO2/acetoacetate generation was measured from [1-14C]-butyrate (5.0 mmol/l) in the presence of 0-2.0 mmol/l sodium hydrogen sulphide. The effect of 5.0 mmol/l L-methionine, S-adenosylmethionine 1,4 butane disulphonate and DL-methionine-S-methylsulphonium chloride on sulphide inhibited oxidation was observed. In rat colonocytes sodium hydrogen sulphide dose dependently reduced oxidative metabolite formation from n-butyrate, an action reversed in order of efficacy by S-adenosylmethionine 1,4 butane disulphonate > DLmethionine-S-methyl-sulphonium chloride > L-methionine. In human colonocytes S-adenosylmethionine 1,4 butane disulphonate most significantly improved 14CO2 production (p = < 0.005) suppressed by sodium hydrogen sulphide. Sulphide toxicity in colonocytes is reversible by methyl donors. The efficiency of sulphide detoxification may be an important factor in the pathogenesis and treatment of ulcerative colitis for which S-adenosylmethionine 1,4 butane disulphonate may be of therapeutic value.