The regulation of protein synthesis in animal cells by serum factors

Abstract
We have investigated the regulation of protein synthesis in animal cells by serum factors. Withdrawal of serum from the medium of actively dividing Vero cells resulted in an immediate decline in the rate of peptide chain elongation (Hassell and Engelhardt, 1973). Assay of elongation factor I (EFI) activity in the post-ribosomal supernatant as well as that associated with the ribosomes revealed that serum deprivation resulted also in reduction in the activity of this factor. The decline in the activity of EFI after serum deprivation occurred to the same extent and at the same time as the decline in the in vivo rate of protein synthesis and the in vitro peptide synthetic capacity of cell-free extracts. A temporal correlation therefore exists among the in vivo rate of protein synthesis, the peptide synthetic activity of cell-free extracts, and the activity of EFI. The activity of peptidyl transferase was not altered by serum deprivation. The loss of extract peptide synthetic activity resulting from serum deprivation was reversible since serum addition to previously serum-starved cultures resulted in full restoration of activity for polyphenylalanine (polyPhe) synthesis within 3 h. Moreover, RNA synthesis was not required for this turn-on of polyPhe synthesis. Vased on these data we conclude that a translational control mechanism is operative in Vero cells deprived of serum.