Endothelial Nitric Oxide Synthase Regulates Brain-Derived Neurotrophic Factor Expression and Neurogenesis after Stroke in Mice
Open Access
- 2 March 2005
- journal article
- research article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 25 (9), 2366-2375
- https://doi.org/10.1523/jneurosci.5071-04.2005
Abstract
Here, we investigate the effects of endothelial nitric oxide synthase (eNOS) on angiogenesis, neurogenesis, neurotrophic factor expression, and neurological functional outcome after stroke. Wild-type and eNOS knock-out (eNOS-/-) mice were subjected to permanent occlusion of the right middle cerebral artery.eNOS-/-mice exhibited more severe neurological functional deficit after stroke than wild-type mice. Decreased subventricular zone (SVZ) progenitor cell proliferation and migration, measured using bromodeoxyuridine, Ki-67, nestin, and doublecortin immunostaining in the ischemic brain, and decreased angiogenesis, as demonstrated by reduced endothelial cell proliferation, vessel perimeter, and vascular density in the ischemic border, were evident ineNOS-/-mice compared with wild-type mice. eNOS-deficient mice also exhibited a reduced response to vascular endothelial growth factor (VEGF)-induced angiogenesis in a corneal assay. ELISAs showed thateNOS-/-mice have decreased brain-derived neurotrophic factor (BDNF) expression but not VEGF and basic fibroblast growth factor in the ischemic brain compared with wild-type mice. In addition, cultured SVZ neurosphere formation, proliferation, telomerase activity, and neurite outgrowth but not cell viability fromeNOS-/-mice were significantly reduced compared with wild-type mice. BDNF treatment of SVZ cells derived fromeNOS-/-mice restored the decreased neurosphere formation, proliferation, neurite outgrowth, and telomerase activity in culturedeNOS-/-SVZ neurospheres. SVZ explant cell migration also was significantly decreased ineNOS-/-mice compared with wild-type mice. These data indicate that eNOS is not only a downstream mediator for VEGF and angiogenesis but also regulates BDNF expression in the ischemic brain and influences progenitor cell proliferation, neuronal migration, and neurite outgrowth and affects functional recovery after stroke.Keywords
This publication has 59 references indexed in Scilit:
- Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesisBrain Research, 2004
- VEGF is a chemoattractant for FGF-2–stimulated neural progenitorsThe Journal of cell biology, 2003
- Aged endothelial nitric oxide synthase knockout mice exhibit higher mortality concomitant with impaired open‐field habituation and alterations in forebrain neurotransmitter levelsGenes, Brain and Behavior, 2002
- TERT regulates cell survival independent of telomerase enzymatic activityOncogene, 2002
- Vascular niche for adult hippocampal neurogenesisJournal of Comparative Neurology, 2000
- Mammalian Neural Stem CellsScience, 2000
- A Novel Function of VEGF Receptor-2 (KDR): Rapid Release of Nitric Oxide in Response to VEGF-A Stimulation in Endothelial CellsBiochemical and Biophysical Research Communications, 1999
- Neuronal Damage and Plasticity Identified by Microtubule-Associated Protein 2, Growth-Associated Protein 43, and Cyclin D1 Immunoreactivity After Focal Cerebral Ischemia in RatsStroke, 1998
- Brain derived neurotrophic factor and insulin like growth factor-1 attenuate upregulation of nitric oxide synthase and cell injury following trauma to the spinal cordAmino Acids, 1998
- Seizures and recovery from experimental brain damageExperimental Neurology, 1988