A New Droop Control Method for the Autonomous Operation of Distributed Energy Resource Interface Converters

Abstract
Microgrid is widely accepted as an effective mean of integrating various distributed energy resources (DERs) through their interface converters to provide electric power of high quality and reliability. These distributed resources interface converters can operate in an autonomous fashion without any communication for enhanced system reliability and reduced complexity. Conventionally, the real power-frequency droop control and the reactive power-voltage magnitude droop are adopted as the decentralized control strategies in these DERs interface converters for the autonomous power sharing operations. However, the reactive power sharing of $Q\hbox{--}V$ droop control often deteriorates due to its dependence on the line impedances. In this paper, a $Q\hbox{--}\dot{V}$ droop control method with $\dot{V}$ restoration mechanism is proposed to improve reactive power sharing. Its operation principle and control method are explained and analyzed. Simulation and experimental results are presented to validate the effectiveness of the proposed method.

This publication has 20 references indexed in Scilit: