Production of bone-resorbing activity and colony-stimulating activity in vivo and in vitro by a human squamous cell carcinoma associated with hypercalcemia and leukocytosis.
Open Access
- 1 July 1986
- journal article
- research article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 78 (1), 145-154
- https://doi.org/10.1172/jci112544
Abstract
A squamous cell carcinoma of 33-yr-old patient who developed marked leukocytosis and hypercalcemia was transplanted into nude mice in which more marked leukocytosis and hypercalcemia also developed. This tumor (LJC-1-JCK) produced a colony-stimulating factor (CSF) and formed a cyst in the tumor from which a CSF-producing cell line (T3M-1) was established. The CSF causes predominantly formation of granulocytic colonies in addition to macrophage colonies. Bone-resorbing activity (BRA) was detected in the cystic fluid and was eluted as two separate peaks with proteins of an apparent molecular weight of 30,000-50,000 and 10,000-20,000. Colony-stimulating activity (CSA) was eluted at an apparent 30,000 mol wt. The conditioned medium of the T3M-1 cells also contained a BRA with an apparent 14,000 mol wt, whereas CSA eluted at an apparent 30,000 mol wt. PTH, epidermal growth factor, transforming growth factor-alpha, prostaglandin Es, and vitamin D could not account for the powerful BRA. In contrast to CSA, BRA was not inactivated by trypsin and more stable at 70 degrees C. When T3M-1 cells were transplanted into nude mice, marked hypercalcemia developed in addition to granulocytosis. Our findings suggest that the tumor produces and secretes a powerful BRA in vivo and in vitro, which is different from CSA in terms of molecular weight, heat stability, and trypsin treatment. We speculate that the synergistic action of CSF that stimulates macrophage colony formation and recruits osteoclast precursors, and BRA, which stimulates mononuclear phagocytes and/or osteoclasts were responsible for a marked increase in osteoclastic bone resorption and humoral hypercalcemia in the patient.This publication has 43 references indexed in Scilit:
- Granulocytosis associated with tumor cell production of colony-stimulating activity.1983
- Identification of adenylate cyclase-stimulating activity and cytochemical glucose-6-phosphate dehydrogenase-stimulating activity in extracts of tumors from patients with humoral hypercalcemia of malignancy.Proceedings of the National Academy of Sciences, 1983
- Human renal carcinoma cells produce hypercalcemia in the nude mouse and a novel protein recognized by parathyroid hormone receptors.Journal of Clinical Investigation, 1983
- ASSOCIATION OF HYPERCALCEMIA WITH TUMORS PRODUCING COLONY-STIMULATING FACTOR(S)1983
- Quantitative Bone Histomorphometry in Humoral Hypercalcemia of Malignancy: Uncoupling of Bone Cell Activity*Journal of Clinical Endocrinology & Metabolism, 1982
- The Origin of OsteoclastsImmunobiology, 1982
- Factors regulating macrophage production and growth. Purification and some properties of the colony stimulating factor from medium conditioned by mouse L cells.Journal of Biological Chemistry, 1977
- Effect of osteoclast activating factor from human leukocytes on bone metabolism.Journal of Clinical Investigation, 1975
- Isolation of a cationic polypeptide from human serum that stimulates proliferation of 3T3 cells.Proceedings of the National Academy of Sciences, 1975
- Specificities of prostaglandins B 1 , F 1 , and F 2 antigen-antibody reactions.1971