Modification of the rat's acoustic startle response by antecedent visual stimulation.

Abstract
Male hooded and albino rats were exposed to a light flash followed at various temporal intervals by a startle-eliciting 117 db. (re 20 muN/m2) burst of white noise. The visual stimulus engendered startle response inhibition (maximally when the lead time was 64-250 msec) as well as startle response latency reduction (maximally when the lead time was 2-8 msec). The temporal functions for the effects of visual stimuli paralleled those previously reported for startle modification by acoustic events. Further study revealed that, given optimal lead times, inhibition is produced reliably by weaker visual stimuli (3 X 10-6 cd-sec/cm2) than latency reduction (3 X 10-4 cd-sec/cm2). This differential sensitivity to visual stimuli is also analogous to previously reported findings for events in the acoustic environment. It reveals that the neural mechanisms that mediate latency reduction and inhibition can be engaged by either acoustic or visual stimulation.