Abstract
Summary The problem of the direct retinohypothalamic projection in mammals (Moore, 1973) was reinvestigated in the laboratory mouse by electron microscopy and cobalt chloride-iontophoresis. The time-course of the axonal degeneration in the suprachiasmatic nucleus was studied 3, 6 and 12 h, 1, 2, 4, 6, 9 and 12 days after unilateral retinectomy. Specificity of the degenerative changes was controlled by investigation of the superficial layers of the superior colliculus. The ratio of crossed to uncrossed optic fibers could be determined by counting degenerating structures (axons and terminals) in the optic chiasma and the ipsilateral and contralateral areas of the optic tract, the suprachiasmatic nucleus, and the superior colliculus. The number of degenerating axons in the suprachiasmatic nucleus showed a maximum one day after unilateral retinectomy and was, at all stages studied, two to three times higher in the contralateral than in the ipsilateral nuclear area. In the optic tract and in the superior colliculus the number of degenerating profiles was three times higher in the contralateral than in the ipsilateral area. Retinohypothalamic connections and crossing pattern of retinal fibers were studied light microscopically using impregnation with cobalt sulfide in whole mounts of brains. Most of the optic fibers in the laboratory mouse are crossed (70–80%). A bundle of predominantly crossed optic fibers runs to the suprachiasmatic nucleus.