Initial flow field over an impulsively started circular cylinder

Abstract
The initial flow field of an incompressible, viscous fluid around a circular cylinder, set impulsively to move normal to its axis, is studied in detail. The nonlinear vorticity equation is solved by the method of matched asymptotic expansions. Analytic solutions for the stream function in terms of exponential and error functions for the inner flow field, and of circular functions for the outer, are obtained to the third order, from which a uniformly valid composite solution is found. Also presented are the vorticity, pressure, separation point and drag. These quantities agree with the numerical computations of Collins & Dennis. Extended solutions developed by Padé approximants indicate that higher than third-order approximations will yield only minor improvements.