Abstract
Conditions for two gas bubbles in a liquid to rise steadily in a vertical line are derived theoretically with these assumptions: large Reynolds number, no surface contamination, spherical shape, negligible gas density and viscosity. Drag coefficients are found, and are lower than for single bubbles. The bubbles have equilibrium distances apart, which are calculated to a first approximation. The equilibrium is shown to be stable to small vertical disturbances but unstable to horizontal ones. Similar results exist for lines of more than two bubbles, but are not calculated in detail.