Abstract
Two simple and equivalent procedures are suggested for improving the calculated average reservoir pressure from pressure buildup tests of liquid or gas wells in developed reservoirs. These procedures are particularly useful in gas well test procedures are particularly useful in gas well test analysis, irrespective of gas composition, in reservoirs with pressure-dependent permeability and porosity, and in oil reservoirs where substantial gas porosity, and in oil reservoirs where substantial gas saturation has been developed. A knowledge of the long-term production history is definitely helpful in providing proper insight in the reservoir engineering providing proper insight in the reservoir engineering aspects of a reservoir, but such long-term production histories need not be known in applying the suggested procedures to pressure buildup analysis. Introduction For analyzing pressure buildup data with constant flow rate before shut-in, there are two plotting procedures that are used the most: the procedures that are used the most: the Miller-Dyes-Hutchinson (MDH) plot and the Horner plot. The MDH plot is a plot of p vs log Deltat, whereas the Horner plot is a plot of p vs log [(t + Deltat)/Deltat]. Deltat is the shut-in time and t is a pseudoproduction time equal to the ratio of total produced fluid to last stabilized flow rate before shut-in. This method was first used by Theis in the water industry. Miller-Dyes-Hutchinson presented a method for calculating the average reservoir pressure, T, in in 1950. This method requires pseudosteady state before shut-in and was at first restricted to a circular reservoir with a centrally located well. Pitzer extended the method to include other Pitzer extended the method to include other geometries. Much later, Dietz developed a simpler interpretation scheme using the same MDH plot: p is read on the extrapolated straight-line section of the pressure buildup curve at shut-in time, Deltat,(1) where C is the shape factor for the particular drainage area geometry and the well location; values for C are tabulated in Refs. 5 and 13. For a circular drainage area with a centrally located well, C = 31.6, and for a square, C = 30.9.Horner presented another approach, which depended on the knowledge of the initial reservoir pressure, pi. This method also was first developed pressure, pi. This method also was first developed for a centrally located well in a circular reservoir.Matthews-Brons-Hazebroek (MBH) introduced another average reservoir pressure determination technique, which has been used more often than other methods: first a Horner plot is made; then the proper straight-line section of the buildup curve is proper straight-line section of the buildup curve is extrapolated to [(t + Deltat)/Deltat] = 1 (this intercept is denoted p*); finally, p is calculated from(2) m is the absolute value of the slope of the straightline section of the Horner plot:(3) pDMBH (tDA) is the MBH dimensionless pressure pDMBH (tDA) is the MBH dimensionless pressure at tDA, and tDA is the dimensionless time:(4) tp k a pseudoproduction time in hours:(5) PDMBH tDA) for different geometries and different PDMBH tDA) for different geometries and different well locations are given in Refs. 6 and 13.The second term on the right-hand side of Eq. 2 is a correction term for finite reservoirs that is based on material balance. Thus, for an infinite reservoir, p = pi = p*, where pi is the initial reservoir pressure. SPEJ P. 55