Regulation of Photosynthesis by End-Product Accumulation in Leaves of Plants Storing Starch, Sucrose, and Hexose Sugars

Abstract
In the present study, leaves of different plant species were girdled by the hot wax collar method to prevent export of assimilates. Photosynthetic activity of girdled and control leaves was evaluated 3 to 7 days later by two methods: (a) carbon exchange rate (CER) of attached leaves was determined under ambient CO(2) concentrations using a closed gas system, and (b) maximum photosynthetic capacity (A(max)) was determined under 3% CO(2) with a leaf disc O(2) electrode. Starch, hexoses, and sucrose were determined enzymically. Typical starch storers like soybean (Glycine max L.) (up to 87.5 milligrams of starch per square decimeter in girdled leaves), cotton (Gossypium hirsutum L.), and cucumber (Cucumis sativus L.) responded to 7 days of girdling by increased (80-100%) stomatal resistance (r(s)) and decreased A(max) (>50%). On the other hand, spinach (Spinacia oleracea L.), a typical sucrose storer (up to 160 milligrams of sucrose per square decimeter in girdled leaves), showed only a slight reduction in CER and almost no change in A(max). Intermediate plants like tomato (Lycopersicon esculentum Mill.), sunflower (Helianthus annuus L.), broad bean (Vicia faba L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.), which upon girdling store both starch and sucrose, responded to the girdle by a considerable reduction in CER but only moderate inhibition of A(max), indicating that the observed reduction in CER was primarily a stomatal response. Both the wild-type tobacco (Nicotiana sylvestris) (which upon girdling stored starch and hexoses) and the starchless mutant (which stored only hexoses, up to 90 milligrams per square decimeter) showed 90 to 100% inhibition of CER and approximately 50% inhibition of A(max). In general, excised leaves (6 days) behaved like girdled leaves of the respective species, showing 50% reduction of A(max) in wild-type and starchless N. sylvestris but only slight decline of A(max) in spinach. The results of the present study demonstrate the possibility of the occurrence of end-product inhibition of photosynthesis in a large number of crop plants. The long-term inhibition of photosynthesis in girdled leaves is not confined to stomatal responses since the A(max) declined up to 50%. The inhibition of A(max) by girdling was strongest in starch storers, but starch itself cannot be directly responsible, because the starchless mutant of N. sylvestris was also strongly inhibited. Similarly, the inhibition cannot be attributed to hexose sugars either, because soybean, cotton, and cucumber are among the plants most strongly inhibited although they do not maintain a large hexose pool. Spinach, a sucrose storer, showed the least inhibition in both girdled and excised leaf systems, which indicates that sucrose is probably not directly responsible for the end-product inhibition of photosynthesis. The occurrence of strong end-product inhibition appears to be correlated with high acid-invertase activity in fully expanded leaves. The inhibition may be related to the nature of soluble sugar metabolism in the extrachloroplastic compartment and may be caused by a metabolite that has different rates of accumulation and turnover in sucrose storers and other plants.