Abstract
We have used the effects of self- and cross-adaptation on the unitary responses of olfactory receptors of the tiger salamander to odor stimulation to investigate the stimulus-specific components of these responses and to provide information about the cross-cell variations in the numbers and numbers of types of constitutent receptive sites. An olfactometer delivered sequential odorous pulses, either juxtaposed or separated by a variable time delay. We used four pairs of odorants judged to be similar within a given pair. The unitary response to the test stimulation relative to that of the conditioning stimulation varied from being unchanged to being completely eliminated. We sometimes observed substantial poststimulus increases in the firing rate following stimulation with juxtaposed odorous pulse. Except in the case of one odorant pair, cross-adaptation occurred both with juxtaposed pulses and with pulses separated in time. With the methyl butyrate/ethyl butyrate odorant pair, however, statistically significant cross-adaptation appeared only with juxtaposed pulses. We propose a simple model to aid in explaining these phenomena. The experimental observations in conjunction with this model are used to obtain estimates of the maximal and minimal number of receptive site types available for interaction with the chosen odorants.