Characterization of Nucleoside Adducts of cis-2-Butene-1,4-dial, a Reactive Metabolite of Furan

Abstract
Furan is a hepatic toxicant and carcinogen in rodents. Its microsomal metabolite, cis-2-butene-1,4-dial, is mutagenic in the Ames assay. Consistent with this observation, cis-2-butene-1,4-dial reacts with 2‘-deoxycytidine, 2‘-deoxyguanosine, and 2‘-deoxyadenosine to form diastereomeric adducts. HPLC analysis indicated that the rate of reaction with deoxyribonucleosides was dependent on pH. At pH 6.5, the relative reactivity was 2‘-deoxycytidine > 2‘-deoxyguanosine > 2‘-deoxyadenosine whereas it was 2‘-deoxyguanosine > 2‘-deoxycytidine > 2‘-deoxyadenosine at pH 8.0. Thymidine did not react with cis-2-butene-1,4-dial. The primary 2‘-deoxyguanosine and 2‘-deoxyadenosine reaction products were unstable and decomposed to secondary products. NMR and mass spectral analysis indicated that the initial 2‘-deoxyadenosine and 2‘-deoxyguanosine reaction products were hemiacetal forms of 3-(2‘-deoxy-β-d-erthyropentafuranosyl)-3,5,6,7-tetrahydro-6-hydroxy-7-(ethane-2‘ ‘-al)-9H-imidazo[1,2-α]purine-9-one (structure 2) and 3-(2‘-deoxy-β-d-erythropentafuranosyl)-3,6,7,8-tetrahydro-7-(ethane-2‘ ‘-al)-8-hydroxy-3H-imidazo[2,1-i]purine (structure 4), respectively. These adducts resulted from the addition of cis-2-butene-1,4-dial to the exo- and endocyclic nitrogens of 2‘-deoxyadenosine and 2‘-deoxyguanosine. The data provide support for the hypothesis that cis-2-butene-1,4-dial is an important genotoxic intermediate in furan-induced carcinogenesis.