The human immunodeficiency virus gp120 binding site on CD4: delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic structure.

Abstract
The first immunoglobulin V-like domain of CD4 contains the binding site for human immunodeficiency virus gp120. Guided by the atomic structure of a two-domain CD4 fragment, we have examined gp120 interaction with informative CD4 mutants, both by equilibrium and kinetic analysis. The binding site on CD4 appears to be a surface region of about 900 A2 on the C" edge of the domain. It contains an exposed hydrophobic residue, Phe43, on the C" strand and four positively charged residues, Lys29, Lys35, Lys46, and Arg59, on the C, C', C", and D strands, respectively. Replacement of Phe43 with Ala or Ile reduces affinity for gp120 by more than 500-fold; Tyr, Trp, and Leu substitutions have smaller effects. The four positively charged side chains each make significant contributions (7-50-fold). This CD4 site may dock into a conserved hydrophobic pocket bordered by several negatively charged residues in gp120. Class II major histocompatibility complex binding includes the same region on CD4; this overlap needs to be considered in the design of inhibitors of the CD4-gp120 interaction.