Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells

Abstract
Sphingosine-1-phosphate (S1P), which is generated from the sphingosine kinase-catalyzed phosphorylation of sphingosine, is now recognized as a critical regulator of many kinds of physiological and pathological processes, including cancer, cardiovascular function, and diabetes. It can also trigger a wide variety of biological effect, such as cell movement, differentiation, survival, inflammation, immunity, calcium homeostasis, and angiogenesis. As we know, a number of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface or intracellular targets. However, the synthesis and the secretion of S1P are regulated by various endogenetic or ectogenous stimuli and involve many kinds of enzymes and transporters. In this review, we discuss the regulation of S1P synthesis by many kinds of enzymes and mainly introduce the process of ceramide to S1P. Moreover, S1P deterioration is important balance in physiologic adjustment. We also describe the role of verified or potential transporters in S1P release in detail.