Abstract
A new algorithm for the calculation of the Fourier transform of sampled time functions is described. The algorithm is especially applicable to the Fourier analysis of nonperiodic signals which are not band limited. The method is based on second‐degree polynomial interpolations between the sample points. The obtained continuous approximation of the signal allows the determination of the Fourier transform analytically. In the case of exponentially decaying functions the algorithm was found to be significantly more accurate than the conventionally used discrete Fourier transform (DFT). The computing time is only about twice the time required by the fast Fourier transform (FFT) algorithm.