Mild Intraischemic Hypothermia Reduces Postischemic Hyperperfusion, Delayed Postischemic Hypoperfusion, Blood-Brain Barrier Disruption, Brain Edema, and Neuronal Damage Volume after Temporary Focal Cerebral Ischemia in Rats

Abstract
Mild to moderate hypothermia (30–33°C) reduces brain injury after brief (n = 8/group). Laser–Doppler estimates of cortical blood flow showed that intraischemic hypothermia reduced both postischemic hyperperfusion (p ≤ 0.01) and postischemic delayed hypoperfusion (p ≤ 0.01). Hypothermia reduced the extent of blood-brain barrier (BBB) disruption as estimated from the extravasation of Evans blue dye at 6 h after the onset of ischemia (p ≤ 0.01). Hypothermia also reduced the volume of both brain edema (p ≤ 0.01) and neuronal damage (p ≤ 0.01) as estimated from Nissl-stained slides at both 6 and 24 h after the onset of ischemia. These results demonstrate that mild intraischemic hypothermia reduces tissue injury after prolonged temporary ischemia, possibly by attenuating postischemic blood flow disturbances and by reducing vasogenic edema resulting from BBB disruption.