Regulation of the Yeast Yap1p Nuclear Export Signal Is Mediated by Redox Signal-Induced Reversible Disulfide Bond Formation
- 1 September 2001
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 21 (18), 6139-50
- https://doi.org/10.1128/mcb.21.18.6139-6150.2001
Abstract
Yap1p, a crucial transcription factor in the oxidative stress response of Saccharomyces cerevisiae, is transported in and out of the nucleus under nonstress conditions. The nuclear export step is specifically inhibited by H(2)O(2) or the thiol oxidant diamide, resulting in Yap1p nuclear accumulation and induction of transcription of its target genes. Here we provide evidence for sensing of H(2)O(2) and diamide mediated by disulfide bond formation in the C-terminal cysteine-rich region (c-CRD), which contains 3 conserved cysteines and the nuclear export signal (NES). The H(2)O(2) or diamide-induced oxidation of the c-CRD in vivo correlates with induced Yap1p nuclear localization. Both were initiated within 1 min of application of oxidative stress, before the intracellular redox status of thioredoxin and glutathione was affected. The cysteine residues in the middle region of Yap1p (n-CRD) are required for prolonged nuclear localization of Yap1p in response to H(2)O(2) and are thus also required for maximum transcriptional activity. Using mass spectrometry analysis, the H(2)O(2)-induced oxidation of the c-CRD in vitro was detected as an intramolecular disulfide linkage between the first (Cys(598)) and second (Cys(620)) cysteine residues; this linkage could be reduced by thioredoxin. In contrast, diamide induced each pair of disulfide linkage in the c-CRD, but in this case the cysteine residues in the n-CRD appeared to be dispensable for the response. Our data provide evidence for molecular mechanisms of redox signal sensing through the thiol-disulfide redox cycle coupled with the thioredoxin system in the Yap1p NES.Keywords
This publication has 34 references indexed in Scilit:
- Nuclear Import of the Yeast AP-1-like Transcription Factor Yap1p Is Mediated by Transport Receptor Pse1p, and This Import Step Is Not Affected by Oxidative StressPublished by Elsevier ,2001
- Roles of the Glutathione- and Thioredoxin-Dependent Reduction Systems in the Escherichia Coli and Saccharomyces Cerevisiae Responses to Oxidative StressAnnual Review of Microbiology, 2000
- Thioredoxin Peroxidase Is Required for the Transcriptional Response to Oxidative Stress in Budding YeastMolecular Biology of the Cell, 2000
- Stress‐activated signalling pathways in yeastGenes to Cells, 1998
- Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP‐1 transcriptional regulationMolecular Microbiology, 1996
- [11] Diamide: An oxidant probe for thiolsMethods in Enzymology, 1995
- GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation.Molecular and Cellular Biology, 1994
- Yeast YAP1 encodes a novel form of the jun family of transcriptional activator proteins.Genes & Development, 1989
- Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDaAnalytical Biochemistry, 1987
- [71] Preparation of γ-glutamyl mino acids by chemical and enzymatic methodsPublished by Elsevier ,1985