Quantum Monte Carlo calculations ofnuclei
Top Cited Papers
- 1 June 2000
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review C
- Vol. 62 (1), 014001
- https://doi.org/10.1103/physrevc.62.014001
Abstract
We report quantum Monte Carlo calculations of ground and low-lying excited states for nuclei using a realistic Hamiltonian containing the Argonne two-nucleon and Urbana IX three-nucleon potentials. The calculations begin with correlated eight-body wave functions that have a filled -like core and four p-shell nucleons coupled to the appropriate quantum numbers for the state of interest. After optimization, these variational wave functions are used as input to a Green’s function Monte Carlo calculation made with a new constrained path algorithm. We find that the Hamiltonian produces a ground state that is within 2 MeV of the experimental resonance, but the other eight-body energies are progressively worse as the neutron-proton asymmetry increases. The ground state is stable against breakup into subclusters, but the ground state is not. The excited state spectra are in fair agreement with experiment, with both the single-particle behavior of and and the collective rotational behavior of being reproduced. We also examine energy differences in the isomultiplets and isospin-mixing matrix elements in the excited states of Finally, we present densities, momentum distributions, and studies of the intrinsic shapes of these nuclei, with exhibiting a definite cluster structure.
Keywords
All Related Versions
This publication has 38 references indexed in Scilit:
- Nuclear Structure Studies with theReactionPhysical Review Letters, 1999
- Microscopic Calculation ofElastic and Transition Form FactorsPhysical Review Letters, 1998
- Quantum Monte Carlo calculations of nuclei withPhysical Review C, 1997
- Three-body correlations in few-body nucleiPhysical Review C, 1995
- Quantum Monte Carlo Calculations ofNucleiPhysical Review Letters, 1995
- Accurate nucleon-nucleon potential with charge-independence breakingPhysical Review C, 1995
- Experimental study of 8He + p elastic and inelastic scatteringPhysics Letters B, 1993
- From deuterons to neutron stars: variations in nuclear many-body theoryReviews of Modern Physics, 1993
- Variational calculations of few-body nucleiPhysical Review C, 1991
- Effective interactions for the 1p shellNuclear Physics, 1965