Abstract
Tooth development and replacement in fetal and adult viviparous caecilians (Amphibia: Gymnophiona) are described and analyzed according to current theories of tooth succession. The fetal dentition differs from that of the adult in morphology, position, and function. Teeth are used by fetuses to scrape the oviducal epithelium, thus stimulating the secretion of a nutrient substance. Fetal dentitions vary in morphology and position in different species. The ontogeny of teeth of several species is described and the patterns of addition of loci and of replacement are analyzed, Loci are added both posteriorly along the jaw and between existing loci as the jaw grows prior to ossification; subsequently addition is restricted to the posterior part of the jaw. Tooth replacement is alternate. The several rows and patches of teeth are the result of retention of replacement series on the dentigerous elements. Tooth development and replacement in a series of juveniles and adults of different sizes in a single species are also considered. Post-fetal patterns of development and replacement are similar to those seen in larvae and adults of oviparous species. Variation in numbers of teeth and proportions of teeth at particular stages occurs ontogenetically and among individuals of the same size, though proportions occur in a similar pattern throughout the series. The general pattern of tooth replacement in fetuses and adults can be explained by either Edmund's Zahnreihen theory or by Osborn's Tooth Family theory, but replacement in fetal tooth patches and the fetal-adult dentitional transition are explained by neither.