Revisiting and Computing Reaction Coordinates with Directional Milestoning

Abstract
The method of Directional Milestoning is revisited. We start from an exact and more general expression and state the conditions and validity of the memory-loss approximation. An algorithm to compute a reaction coordinate from Directional Milestoning data is presented. The reaction coordinate is calculated as a set of discrete jumps between Milestones that maximizes the flux between two stable states. As an application we consider a conformational transition in solvated adenosine. We compare a long molecular dynamic trajectory with Directional Milestoning and discuss the differences between the maximum flux path and minimum energy coordinates.