Investigation of the effects of boron on Ni3Al grain boundaries by atomistic simulations

Abstract
A series of simulations has been performed on grain boundaries in Ni and Ni3Al with and without boron doping using embedded atom-style potentials. A new procedure of obtaining “reference” data for boron related properties from electronic band structure calculations has been employed. Good agreement with existing experimental structural and energetic determinations was obtained. Boron is found to segregate more strongly to grain boundaries than to free surfaces. Adding boron to grain boundaries in Ni and Ni3Al increases their cohesive strength and the work required to pull apart the boundary. This effect is much more dramatic for Ni-rich boundaries than for stoichiometric or Al-rich boundaries. In some Ni-rich cases, adding boron increases the cohesive strength of the boundary to such an extent that the boundaries become stronger than the bulk. Bulk Ni3Al samples that are Ni-rich produce Ni-rich grain boundaries. The best cohesive properties of Ni3Al grain boundaries are obtained when the boundary is Ni saturated and also with boron present. Boron and nickel are found to cosegregate to the grain boundaries.