Another Look at Downslope Winds. Part II: Nonlinear Amplification beneath Wave-Overturning Layers

Abstract
Numerical mountain wave simulations have documented that intense lee-slope winds frequently arise when wave-overturning occurs above the mountain. Explanations for this amplification process have been proposed by Clark and Peltier in terms of a resonance produced by linear-wave reflections from a self-induced critical layer, and by Smith in terms of solutions to Long's equation for flow beneath a stagnant well-mixed layer. In this paper, we evaluate the predictions of these theories through numerical mountain-wave simulations in which the level of wave-overturning is fixed by a critical layer in the mean flow. The response of the simulated flow to changes in the critical-layer height and the mountain height is in good agreement with Smith's theory. A comparison of Smith's solution with shallow-water theory suggests that the strong lee-slope winds associated with wave-overturning are caused by a continuously stratified analog to the transition from subcritical to supercritical flow in conventional hydraulic theory.