Abstract
Clinical laboratories historically diagnose seven or eight respiratory virus infections using a combination of techniques including enzyme immunoassay, direct fluorescent antibody staining, cell culture, and nucleic acid amplification tests. With the discovery of six new respiratory viruses since 2000, laboratories are faced with the challenge of detecting up to 19 different viruses that cause acute respiratory disease of both the upper and lower respiratory tracts. The application of nucleic acid amplification technology, particularly multiplex PCR coupled with fluidic or fixed microarrays, provides an important new approach for the detection of multiple respiratory viruses in a single test. These multiplex amplification tests provide a sensitive and comprehensive approach for the diagnosis of respiratory tract infections in individual hospitalized patients and the identification of the etiological agent in outbreaks of respiratory tract infection in the community. This review describes the molecular methods used to detect respiratory viruses and discusses the contribution that molecular testing, especially multiplex PCR, has made to our ability to detect respiratory viruses and to increase our understanding of the roles of various viral agents in acute respiratory disease.

This publication has 294 references indexed in Scilit: