Abnormal Expression of the Myelin‐Associated Glycoprotein in the Central Nervous System of Dysmyelinating Mutant Mice

Abstract
Total cytoplasmic brain RNA was isolated at two different ages from three neurological mutant mice (qk/qk, jp/Y, and shi/shi) and their apparently normal littermates. This RNA was translated in vitro in a rabbit reticulocyte lysate system. Myelin-associated glycoprotein (MAG)-related polypeptides were immunoprecipitated from equal amounts of total translation products derived from mRNA of mutant animals, normal littermates, or control animals. The developmentally regulated synthesis of MAG polypeptides was compared among the mutants and normal animals. mRNA from qk/qk brains synthesized an overabundance of p67MAG (five- to sevenfold) which may be compensation for a decreased synthesis of p72MAG. mRNA from jp/Y brain synthesized less than 10% of normal amounts of both MAG polypeptides. The quantity of MAG synthesized by 15-day shi/shi brain mRNA was slightly decreased compared with normal brain mRNA but the quantity of MAG synthesized by adult shi/shi brain mRNA was normal. No apparent differences were detected in the sizes of the MAG polypeptides synthesized by any of the mutants studied. The data suggest that the genetic defect in qk/qk mutants directly or indirectly affects the coordinated developmental regulation of MAG polypeptide synthesis leading to an overabundance of the MAG polypeptide that is normally found in older animals. The jp/Y mutation appears to affect general myelin protein synthesis. Finally, shi/shi mutants may have a delayed synthesis of MAG. The data are discussed in the light of recent observations concerning the synthesis of myelin proteins and their proposed role in myelin assembly.