Age-Related Changes in Small Proteoglycans of Low buoyant Density of Human Articular Cartilage

Abstract
Proteoglycans extracted from articular cartilage of large joints of humans aged 4, 11, 70 and 75, were fractionated on associative density gradients. The top fraction (A3) was purified by ion-exchange chromatography and subsequent gel filtration on Sepharose CL 4B in 4 M GuCI, 0.5% Triton × 100. Proteoglycans from young cartilages yielded a narrow rapid migrating band on gel electrophoresis, had a Kav of 0.43 and 0.44 on Sepharose CL 4B, a glucosamine/galactosamine ratio of 0.11 and 0.12 and a glycoprotein core rich in aspartic acid and leucine with a Mr of about 47000. Proteoglycans from old cartilages gave a wider and slower migrating band on gel electrophoresis, had a wide peak with a Kav of 0.38 and 0.40 on Sepharose CL 4B, a glucosamine/galactosamine ratio of 5.1 and 3.2, a glycoprotein core rich in glutamic acid and glycine, and with a Mr of about 170 000–180 000. Analysis using monoclonal antibodies detected epitopes of keratare sulfate and of hyaluronic acid binding region in the fractions from old but not in those from young cartilages. Small proteoglycans not derived from the large monomers are the major component of lowbuoyant-density fractions of proteoglycans from young cartilages. Fragments of large monomers containing keratan sulfate and hyaluronic acid binding region are the major component of similar fractions from old cartilage.