Abstract
1. Voltage-dependent properties of muscarinic receptor cationic current activated by carbachol in single smooth muscle cells have been studied using patch-clamp recording techniques. Cells were obtained by enzymic digestion from the longitudinal muscle layer of guinea-pig small intestine. 2. The inward cationic current showed a pronounced U-shaped current-voltage relationship (inward current negative). The relationship of cationic conductance to voltage could be described by a Boltzman distribution which was shifted 36 mV in the negative direction on the voltage axis by increasing fractional receptor occupancy (by increasing agonist concentration from 3 to 300 microM), and in the positive direction by desensitization during prolonged application of agonist. Cationic channels opened by low and high concentrations of carbachol at the same potential do not have identical properties. 3. Release of GTP within the cell, by flash photolysis of an inert caged precursor, had the same effect on the current-voltage relationship as increasing receptor occupancy by the agonist. Release of GDP beta S by flash photolysis had the opposite effect. 4. These various results could be explained if cationic channel opening upon receptor activation required binding of at least one alpha-GTP subunit, but the position of the activation curve on the voltage axis depended critically on the concentration of activated G-protein alpha-subunits in the cell.