The three-dimensional problem of contact between a spherical indenter and a multi-layered structure bonded to an elastic half-space is investigated. The layers and half-space are assumed to be composed of transversely isotropic materials. By the use of Hankel transforms, the mixed boundary value problem is reduced to an integral equation, which is solved numerically to determine the contact stresses and contact region. The interior displacement and stress fields in both the layer and half-space can be calculated from the inverse Hankel transform used with the solved contact stresses prescribed over the contact region. The stress components, which may be related to the contact failure of coatings, are discussed for various coating thicknesses.