First-order autoregressive gamma sequences and point processes

Abstract
It is shown that there is an innovation process {∊n} such that the sequence of random variables {Xn} generated by the linear, additive first-order autoregressive scheme Xn = pXn-1 + ∊n are marginally distributed as gamma (λ, k) variables if 0 ≦p ≦ 1. This first-order autoregressive gamma sequence is useful for modelling a wide range of observed phenomena. Properties of sums of random variables from this process are studied, as well as Laplace-Stieltjes transforms of adjacent variables and joint moments of variables with different separations. The process is not time-reversible and has a zero-defect which makes parameter estimation straightforward. Other positive-valued variables generated by the first-order autoregressive scheme are studied, as well as extensions of the scheme for generating sequences with given marginal distributions and negative serial correlations.

This publication has 21 references indexed in Scilit: