Engineering a Thermostable Protein via Optimization of Charge−Charge Interactions on the Protein Surface
- 20 November 1999
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 38 (50), 16419-16423
- https://doi.org/10.1021/bi992271w
Abstract
A simple theoretical model for increasing the protein stability by adequately redesigning the distribution of charged residues on the surface of the native protein was tested experimentally. Using the molecule of ubiquitin as a model system, we predicted possible amino acid substitutions on the surface of this protein which would lead to an increase in its stability. Experimental validation for this prediction was achieved by measuring the stabilities of single-site-substituted ubiquitin variants using urea-induced unfolding monitored by far-UV CD spectroscopy. We show that the generated variants of ubiquitin are indeed more stable than the wild-type protein, in qualitative agreement with the theoretical prediction. As a positive control, theoretical predictions for destabilizing amino acid substitutions on the surface of the ubiquitin molecule were considered as well. These predictions were also tested experimentally using correspondingly designed variants of ubiquitin. We found that these variants are less stable than the wild-type protein, again in agreement with the theoretical prediction. These observations provide guidelines for rational design of more stable proteins and suggest a possible mechanism of structural stability of proteins from thermophilic organisms.Keywords
This publication has 10 references indexed in Scilit:
- Cell adhesion: old and new questionsTrends in Biochemical Sciences, 1999
- Electrostatic contributions to the stability of hyperthermophilic proteinsJournal of Molecular Biology, 1999
- Thermodynamics of Protein Interactions with Urea and Guanidinium HydrochlorideThe Journal of Physical Chemistry B, 1999
- Cold denaturation of ubiquitinBiochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1999
- Hydrogen bonding stabilizes globular proteinsBiophysical Journal, 1996
- Sequence space, folding and protein designCurrent Opinion in Structural Biology, 1996
- The Mechanism of alpha-Helix Formation by PeptidesAnnual Review of Biophysics, 1992
- The folding of an enzyme: VI. The folding pathway of barnase: Comparison with theoretical modelsJournal of Molecular Biology, 1992
- Multiple-site titration curves of proteins: an analysis of exact and approximate methods for their calculationThe Journal of Physical Chemistry, 1991
- On the environment of ionizable groups in globular proteinsJournal of Molecular Biology, 1984