Partial characterization of newly synthesized proteoglycans isolated from the glomerular basement membrane.

Abstract
Kidneys were perfused with [35S]sulfate at 4 h in vitro to radiolabel sulfated proteoglycans. Glomeruli were isolated from the labeled kidneys, and purified fractions of glomerular basement membrane (GBM) were prepared therefrom. Proteoglycans were extracted from GBM fractions by use of 4 M guanidine-HCl at 4 degrees C in the presence of protease inhibitors. The efficiency of extraction was approximately 55% based on 35S radioactivity. The extracted proteoglycans were characterized by gel-filtration chromatography (before and after degradative treatments) and by their behavior in dissociative CsCl gradients. A single peak of proteoglycans with an Mr of 130,000 (based on cartilage proteoglycan standards) was obtained on Sepharose CL-4B or CL-6B. Approximately 85% of the total proteoglycans were susceptible to nitrous acid oxidation (which degrades heparan sulfates), and approximately 15% were susceptible to digestion with chondroitinase ABC (degrades chondroitin-4 and -6 sulfates and dermatan sulfate). The released glycosaminoglycan (GAG) chains had an Mr of approximately 26,000. Density gradient centrifugation resulted in the partial separation of the extracted proteoglycans into two types with different densities: a heparan sulfate proteoglycan that was enriched in the heavier fraction (p greater than 1.43 g/ml), and a chondroitin sulfate proteoglycan that was concentrated in the lighter fractions (p less than 1.41). The results indicate that two types of proteoglycans are synthesized and incorporated into the GBM that are similar in size and consist of four to five GAG chains (based on cartilage proteoglycan standards). The chromatographic behavior of the extracted proteoglycans and the derived GAG, together with the fact that the two types of proteoglycans can be partially separated into the density gradient, suggest that the heparan sulfate and chondroitin sulfate(s) are located on different core proteins.