Action of colchicine on membrane currents and synaptic transmission inAplysia ganglion cells

Abstract
The action of colchicine, a drug known to disrupt microtubules, on synaptic transmission and voltage‐dependent phenomena was studied. Colchicine depressed transmission in both cholinergic and noncholinergic Aplysia ganglionic synapses. In some synapses, this effect was partly due to the curare like properties of the alkaloid. Ca2+ currents, analyzed by voltage clamp techniques, were rapidly depressed by intracellular injection of colchicine and more slowly depressed by external application. Injected colchicine acted at much lower concentrations than required extracellularly. The implication of the reduced calcium influx in synaptic transmission is discussed. Colchicine caused a shift in the reversal potential of acetylcholine‐activated chloride channels in a direction consistent with an increased intracellular chloride activity. It was concluded that the wide range of actions of colchicine on membrane properties should be taken into account when this drug is used in biological research.