Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle.

Abstract
The sequential transcriptional activation of cyclins, the regulatory subunits of cell-cycle-specific kinases, is thought to regulate progress through the cell cycle. Cyclins are therefore potential oncogenes, and cyclin D1 overexpression and/or amplification at its genomic locus, 11q13, are common features of several human cancers. Induction of cyclin D1 is an early response to mitogenic stimulation in several cell types, but the consequences of altered expression of this gene in human cells of epithelial origin remain undefined. We assessed the effects of alterations of cyclin D1 expression in human breast cancer cells by generating T-47D cells expressing human cyclin D1 under the control of a zinc-responsive metallothionein promoter. In cycling cells induction of cyclin D1 after zinc treatment resulted in an increase in the number of cells progressing through G1 and in the rate of transition from G1 to S phase, indicating that cyclin D1 is rate-limiting for progress through G1 phase. In cells arrested in early G1 phase after growth factor deprivation, zinc induction of cyclin D1 was sufficient for completion of the cell cycle, a process requiring growth factor stimulation in control cells. These data demonstrate a critical role for cyclin D1 in human breast cancer cell-cycle control and suggest that deregulated expression of cyclin D1 is likely to reduce dependence on normal physiological growth stimuli, thereby providing a growth advantage to tumor cells and a potential mechanism of resistance to endocrine therapy.