Activation of endothelial L-arginine pathway in resistance arteries. Effect of age and hypertension.

Abstract
In conduit arteries, nitric oxide is formed from L-arginine in the endothelium and released after stimulation with acetylcholine. The contribution of the L-arginine pathway and the effects of age and hypertension on endothelium-dependent vascular regulation were studied, using a video dimension analyzer, in pressurized and perfused mesenteric resistance arteries of 8- and 16-20-week-old Wistar-Kyoto and spontaneously hypertensive rats. Norepinephrine and phenylephrine caused contractions, which were similarly augmented after removal of the endothelium. NG-Monomethyl-L-arginine, an inhibitor of nitric oxide formation, augmented the contraction, but less than endothelial removal. Acetylcholine caused endothelium-dependent relaxations that were much more pronounced with intraluminal than with extraluminal application. NG-Monomethyl-L-arginine, methylene blue, and hemoglobin only partially inhibited the response. With aging, the endothelium-dependent inhibition of the response to norepinephrine decreased in Wistar-Kyoto rats; in spontaneously hypertensive rats this inhibition was smaller as compared with age-matched Wistar-Kyoto rats. In Wistar-Kyoto rats, the difference between intraluminal and extraluminal activation became more pronounced in adult rats. In the adult but not the young spontaneously hypertensive rats, the response to intraluminal but not extraluminal acetylcholine was reduced as compared with Wistar-Kyoto rats. Thus, in mesenteric resistance arteries of the rat, nitric oxide is released from L-arginine under basal conditions and after stimulation with acetylcholine but only in part accounts for endothelium-dependent responses. With aging and hypertension, the inhibitory effects of the endothelium against norepinephrine-induced contractions decrease. In hypertension, the intraluminal but not extraluminal activation of the release of endothelium-derived relaxing factors is impaired.