Timing the Ancestor of the HIV-1 Pandemic Strains

Top Cited Papers
Open Access
Abstract
HIV-1 sequences were analyzed to estimate the timing of the ancestral sequence of the main group of HIV-1, the strains responsible for the AIDS pandemic. Using parallel supercomputers and assuming a constant rate of evolution, we applied maximum-likelihood phylogenetic methods to unprecedented amounts of data for this calculation. We validated our approach by correctly estimating the timing of two historically documented points. Using a comprehensive full-length envelope sequence alignment, we estimated the date of the last common ancestor of the main group of HIV-1 to be 1931 (1915–41). Analysis of a gag gene alignment, subregions of envelope including additional sequences, and a method that relaxed the assumption of a strict molecular clock also supported these results.